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Abstract In this review, we first introduce recent progress in the mathematical struc-
ture of the three-dimensional Ising model, from the points of view of topologic, alge-
braic and geometric aspects. Then we discuss in turn Anderson localization due to
disorder and then first- and second-order metal-insulator transitions, depending on
electron correlation, with and without a magnetic field. Finally, we make intimate
contact with the phase diagram showing the equilibrium between low temperature
regimes of the magnetically induced Wigner electron solid and the so-called Laughlin
electron liquid in the two-dimensional case.
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1 Introduction

Understanding the critical phenomena in various materials has proven to be one of the
most difficult challenges in physics. Though the Ising model is a very simple model
(though difficult still to solve for dimensionality D = 3, see below), it can reveal
the essential nature of the critical behavior at/near the critical point. In spite of the
pioneering work of Onsager [1] on the two-dimensional (2D) version, some aspects
of the three-dimensional (3D) case remain however controversial. Much progress has
occurred on the theory of phase transitions, following early ideas of Kadanoff [2] and
Widom [3], which were brought to full fruition in the renormalization group studies of
Wilson [4]. Notwithstanding this progress, there remain crucial outstanding problems
like, for instance, the exact solution of the 3D Ising model. On the one hand, the
root of the difficulties for the exact solution of the 3D Ising model is believed to be
topologic, which should be dealt with globally. On the other hand, all the well-accepted
theories or approaches, including the low- and high-temperature expansions [5,6], the
renormalization group [4,7] and the Monte Carlo method [8], take into account only
the local environments of a spin. The critical exponents of the 3D Ising model were
proposed by Zhang [9]; see also [10], in a paper which was quite clearly stated to be
based on two conjectures, associated with a rotation in a 4D space and weight factors
on the eigenvectors, respectively. After publication of Ref. [9], objections raised in
[11–16] have focused mainly on the disagreement between the conjectured solution
and the series expansions, but have not commented on the topology-based approach
underlying the derivation. However, as pointed out in [17–21], all the well-known
theorems [22–33] for the convergence of the high-temperature series are proved only
for β(= 1/kBT) > 0, not for infinite temperature (β = 0). The infinite temperature
limit has been never touched on in these theorems [22–33] cited in [11–16], since
there exists a singularity at β = 0. Recently, the algebraic part of the quaternion
approach used in Ref. [9] was reformulated in terms of the quaternionic sequence of
Jordan algebras to examine further the geometrical aspects of simple orthorhombic
Ising lattices [34], and fractals and chaos related to these 3D Ising lattices were also
investigated [35–37]. The controversy existing in this field is mainly due to a fact that,
as we face up to nature we like the blind feel an elephant by touching. Therefore, it is
very important to study further the mathematical structure of the 3D Ising model, in
order to understand more deeply the problems.

In this review, in Sect. 2.1, we therefore introduce briefly recent progress in the
mathematical structure of the 3D Ising model [21], which certifies the validity of
Zhang’s two conjectures [9]. In Sect. 2.2, we then discuss briefly singularities at/near
infinite temperature, which are of importance for evaluating whether the well-known
high-temperature expansions can serve as a standard for judging the validity of the
conjectured exact solution of the 3D Ising model. In Sects. 3 and 4, we discuss in
turn Anderson localization, a second-order transition induced by disorder, and then
first- and second-order metal-insulator transitions, with and without a magnetic field,
driven by electron correlation in a two-dimensional electron assembly. Finally, we
make intimate contact with the phase diagram showing the equilibrium between low
temperature regimes of the magnetically induced Wigner electron solid and the so-
called Laughlin electron liquid in the two-dimensional case.
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2 Mathematical structure of the 3D Ising model

2.1 Topologic, algebraic and geometric aspects

Recently, one of us (ZDZ) gave an overview of the mathematical structure of the 3D
Ising model [21], from the viewpoints of topologic, algebraic and geometric aspects.
Here we summarize briefly the results obtained in [21].

It is well-known that the main difficulties for solving explicitly the 3D Ising model
are caused by so-called internal factors in the transfer matrix V [13,18], which are
topologic. Two kinds of contribution to the partition function can be distinguished:
namely (1) those reflecting the local arrangement of spins and (2) the remainder
reflecting the non-local behaviour of the knots. These two types of contribution are
subsumed into the transfer matrix V for the 3D Ising model [9,17,18]. Therefore,
the procedure for the exact solution of the 3D Ising model involves the smoothing
of knots/crosses in the transfer matrix V. Topologically, there are two choices for
smoothing a given crossing (×), and thus there are 2N states of a diagram with N
crossings [9,38–40]. The bracket state summation, 〈K 〉 = ∑

σ 〈K |σ 〉d‖σ‖, is an
analog of a partition function in discrete statistical mechanics [9,38–40]. Here σ runs
over all the states of K. d = −A2 − B2, with A, B and d being commuting algebraic
variables. According to the topological theory, one could transform from the basis of

〈χ〉 and 〈χ−1〉 (see Eq. (2.1) below) to the basis of 〈∪
∩ 〉 and 〈)(〉 by a transformation,

and vice versa. The transformation can be written as [21,39,40]:

[ 〈χ〉〈
χ−1

〉
]

=
[

A B
B A

]
⎡

⎣

〈∪
∩

〉

〈)(〉

⎤

⎦ (2.1)

The bracket with B = A−1, d = −A2 − A−2 is invariant under the Reidemeister
moves II and III [39,40].1 Therefore, a (complex) matrix representing the unitary
transformation (a rotation) may always exist, no matter how complicated the knots
or links are. The 3D interacting Ising system with non-trivial knots or links requires
naturally the existence of the additional dimension (say, ‘time’). After smoothing, there
will be no crossing in the new matrix V ′ ≡ V ′

4 ·V ′
3 ·V ′

2 ·V ′
1 [9], which precisely includes

the topologic contribution to the partition function and becomes diagonalizable.
Meanwhile, a diagram of a knot or link can usually be interpreted as an abstract

tensor diagram, by using an oriented diagram and associating two matrices Rab
cd and

R
ab
cd with two types of crossing [39,40]. Then, any oriented link diagram K can be

mapped to a specific contracted abstract tensor T(K). If the matrices R and R satisfy
channel unitary, cross-channel unitary and the Yang–Baxter equation [41–43], then
T(K) is a regular isotopy invariant for oriented diagram K. It is worthwhile noting
that the Yang–Baxter equation corresponds to a Reidemeister Move of type III. The

1 A Reidemeister move refers to one of three local moves on a link diagram. Each move operates on a small
region of the diagram and is one of three types: I. Twist and untwist in either direction. II. Move one loop
completely over another. III. Move a string completely over or under a crossing.
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Yang–Baxter equation in the form of the universal R-matrix can be represented as
[39]:

R12 R13 R23 = R23 R13 R12 (2.2)

with R12 = ∑
s es ⊗ es ⊗ 1, R13 = ∑

s es ⊗ 1 ⊗ es and R23 = ∑
s 1 ⊗ es ⊗ es . The

Yang–Baxter equation and its generalization ensure the commutativity of the trans-
fer matrices and the integrability of exactly solvable models of statistical mechanics
[40–43]. However, the Yang–Baxter equation can be utilized only to solve the 2D
models, and its 3D analogue is the so-called tetrahedron equation, or generalized
Yang–Baxter equation [44–52]. Decomposition and rearrangement of a tetrahedron
(of a rhombic dodecahedron) show how to deal with the topological problem of the
3D models [46] by disconnection/fusion of the crossings. Satisfying the tetrahedron
relation guarantees the commutativity of the transfer matrices and the integrability of
the 3D Ising models. The disconnection/fusion of the crossings causes the emerging
of the phase factors in the 3D Ising model. The Jordan algebra and the Jordan-von
Neumann–Wigner procedures guarantee the commutative relations [34–37,53], and
thus the existence of the tetrahedron relation.

The procedure for explicitly solving the 3D Ising model is related with Lie alge-
bras/Lie group, via quaternions, Pauli matrices, special unitary group SU(2), rotation
matrices SO2 (R), and special orthogonal group SO(3) [21]. We have to deal with the
3D Ising model in much larger Hilbert space by introducing the additional dimension,
because the operators generate much larger Lie algebras, due to the appearance of
nonlocal behaviour (knots) [9]. In the 3D Ising model, one obtains a paravector by
adding the fourth dimension to form quaternion eigenvectors, giving a result which
corresponds to the Clifford or geometric algebra C�3. The quaternion approach devel-
oped in Ref. [9] can be made more elegant and simple by the use of Clifford structures
and the P. Jordan structures [34–37]. The natural appearance of the multiplication
A ◦ B = 1

2 (AB + B A) in Jordan algebras instead of the usual matrix multiplica-
tion AB satisfies the desire for commutative subalgebras of the algebra constructed in
Ref. [9] and for their combinatorial properties. It is known that the unit quaternions
can be thought of as a choice of a group structure on the 3-sphere S3 that gives the
group Spin(3), which is isomorphic to SU(2) and also to the universal cover of SO(3).
Therefore, the complexified quaternion basis constructed in Ref. [9] for the 3D Ising
model represents naturally a rotation in the 4D space (a (3 + 1)-dimensional space-
time). Performing the fourfold integration of the partition function of the 3D Ising
model meets the requirement of taking the time average [9,54]. This is related closely
with well-developed theories, for example, complexified quaternion [55], quaternionic
quantum mechanics [56–58], and quaternion and special relativity [59]. In a recent
work [60], we proposed that quaternion-based functions developed in Ref. [9] for the
3D Ising model can be utilized to study the conformal invariance in dimensions three.
The 3D conformal transformations can be decomposed into three 2D conformal trans-
formations, where the Virasoro algebra still works, but only for each complex plane
of quaternionic coordinates in the complexified quaternionic Hilbert space.

As a generalization of the geometric relations obtained in Ref. [1] for the 2D Ising
model, the geometric relations obtained in Ref. [9], i.e., eqns. (29)–(32) of Ref. [9], for
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the 3D Ising model, are those in a hyperbolic 3-sphere, which can be represented in the
4D Poincaré disk (ball) model. The 3-sphere has a natural Lie group structure given
by quaternion multiplication, which is consistent with the quaternion eigenvectors
constructed in Ref. [9] for the 3D Ising model. According to observations in Ref. [9],
the duality transformations of the simple orthorhombic Ising models are between
the edges and their corresponding faces of the two dual orthorhombic lattices. It is
expected that the duality between other 3D lattices should be related also with the edges
and their corresponding faces of the dual lattices [21]. The duality relation between
two dual tetrahedron lattices, or alternatively, between a tetrahedron lattice and a 3D
honeycomb lattice could map a low-temperature (high-temperature) model on the
tetrahedron lattice to a high-temperature (low-temperature) one on the 3D honeycomb
lattice. Moreover, the balance between the exchange energy and thermal activity of
the Ising model is related with the geometric duality, fractal and quasicrystals. Some
geometrical connections should exist between the golden (or silver) ratio (the critical
point of the most symmetric 3D (or 2D) lattice), Fibonacci (or Octonacci) number, 3D
tenfold (or 2D eightfold) quasicrystal, and fractal of flower (or branch) type [21]. The
weight factors for the 3D Ising model were interpreted as geometric (or topologic)
phases [17], similar to those in Berry phase effect, Aharonov-Bohm effect, Josephson
effect„ the Quantum Hall effects, etc. The novel phases appeared in the 3D Ising model
[9,17] can be understood further, in connection with quantum field theory and gauge
models [21].

2.2 Singularities of the free energy of the 3D Ising system at/near infinite
temperature

In this subsection, we briefly discuss singularities of the free energy of the system
at/near infinite temperature, since it is useful to judge whether the high-temperature
expansions can serve as a standard for the exact solution of the 3D Ising model.

We have pointed out [19,21] that the singularities of the reduced free energy βf,
the free energy per site f and the free energy F of the 3D Ising model differ at β = 0.
The definition of the free energy per site f loses physical significance at T = ∞,
and one has to face directly the total free energy F to study the singularities of the
system. One needs to discuss not only the zeros, but also the poles of the partition
function Z for complete information of the system, specially, for the singularities at
infinite temperature. This is because the intrinsic characters of the singularities of the
zeros (and the poles) at infinite temperature are quite different from those at finite
temperatures.

As pointed out already in Refs. [17–21], all the well-known theorems [22–33] for
the convergence of the high-temperature series of the 3D Ising model are rigorously
proved only for β(= 1/kBT) > 0, not for infinite temperature (β = 0). These theorems
either deal with the reduced free energy βf (or βp) or set β = 1 for their proof. For
equivalence between βf and f (or that between βp and p), setting β = 1 equalizes to
T = 1/kB �= ∞; it corresponds to β �= 0. This indicates clearly that such a rigorous
proof is valid only for high, but still finite, temperature. Lebowitz and Penrose indicated
clearly in the abstract of their paper [30] that their proof for the analytics of the free
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energy per site and the distribution function of the Ising model is for β > 0. Though
Lebowitz and Penrose claimed that the hard-core systems are analytic in β at β = 0,
actually, their proof concerns β p (the series (4) of Ref. [30]), not p itself. Thus the
hard-core systems are analytic in β only for high but finite temperature. The hard-core
potential is defined by ϕ (r) = +∞ for r ≤ a, and ϕ (r) < ∞ for r > a, where a is
a positive constant (a > 0) [30]. The Ising ferromagnet is isomorphic to a lattice gas
with an attractive interaction potential with ϕ(0) = +∞, and ϕ (r) ≤ 0 for r �= 0 [30].
Even when we treat the Ising model as a special case (with a = 0) of the hard-core
models, the claim of Lebowitz and Penrose is applied to high but finite temperature,
since their proof concerns β p.

Perk claimed in his recent article [15] that his Theorem 2.9 proves rigorously the
analyticity of the reduced free energy βf in terms of β at β = 0. Actually, some
mathematical tricks had been performed in his procedure to avoid the difficulty of
singularities at β = 0, which first appear in Definition 1.4, defining the free energy
per site fN and its infinite system limit f by eqn (6), but in form of − β fN [15]. Then
Lemma 2.5 went on perpetrating the difficulty, discussing the singularity of β fN, and
finally to prove Theorem 2.9 ‘rigorously’ for β f [15].

In the 3D Ising model there indeed exist three singularities [18–21]: (1) H = 0,

β = βc; (2) H = ±i β, β → 0; (3) H = 0, β = 0. The third singularity has phys-
ical significance [18–21]: The 3D Ising system experiences a change from a ‘non-
interaction’ state at β = 0 to an interacting state at β > 0. This change of state is simi-
lar to a switch turning off/on all the interactions at/near infinite temperature, resulting
in a change of the topologic structures and the corresponding phase factors [9,18–21].
The singularities of the free energy F and the free energy per site f at β = 0 support
that two different forms for infinite temperature and finite temperatures could exist
for the high-temperature series expansions of the free energy per site f, as revealed in
Ref. [9].

3 Critical exponents for Anderson localization due to disorder

We turn next to a briefer discussion of the critical exponents for Anderson localization
due to disorder. The early work of Mott and Twose [61] demonstrated conclusively
that, in one dimension, all the electronic states are localized, even for an arbitrarily
small degree of disorder. But the crucial work was that of Anderson [62] in three
dimensions, who drew attention specifically to the absence of diffusion in certain
random lattices. Subsequently, a number of group (see, for example, Dancz, Edwards
and March [63]; this work is summarized by March and Angilella [64]) argued that in
two dimensions (as well as in one: see [61]), all the electron states were localized for
arbitrarily small degree disorder. However, Anderson [62] showed that above a certain
degree of disorder in three dimensions, the electronic states were localized.

With this short Introduction to older studies, we turn to more recent work. Here, a
pioneering contribution was that, García-García [65] studied analytically the metal-
insulator transition in a disordered conductor by combining the self-consistent theory
of localization with the one parameter scaling theory.
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Fig. 1 Continuous curve shows plot of the localization length exponent ν versus the conductivity critical
exponent s, from (2s − 2) ν = s, which is a semiclassical approximation in which equation of s = d

2
approximates s [67]. Lower, dashed sketch shows refinement of the semiclassical result proposed in which
the upper continuous curve is the asymptote for sufficiently large s. The major difference between the two
curves lies in the behaviour of s/ν at d = 2. In the semiclassical case, s/ ν is zero at s = 1(d = 2) because
ν becomes infinite there [see s = 2 ν

2 ν −1 ]. As in the dashed curve, s/ ν = d − 2 is satisfied by s becoming
zero at d = 2, and ν remaining finite (5/2). If the value 5/2 assumed proves not universal, the inequality
ν > 2/d shows that ν(s = 0) > 1. Note that the straight line in Fig. 1 is ν = s

Using Wegner’s result relating critical exponents s and ν for conductivity and local-
ization length, respectively via dimensionality d and that for ν given by García–García
[65], we derived in [66,67] what we term a semiclassical relation for ν in terms of
s which is independent of dimensionality. Forming the ratio s/ ν versus d from the
above relations, s/ ν = 0 at d = 2 is due to a singularity in the semiclassical relation
for ν. We argued that, in reality, s/ ν = 0 results from s being zero at d = 2. Finally
we conjecture that (1) Wegner’s prediction that s/ ν = 1 when d = 3 and (2) ν tends
to 1/2 at large s, are both insensitive to interactions.

In Fig. 1, the continuous curve shows plot of the localization length exponent
ν versus the conductivity critical exponent s, from eqn (5) of Ref. [67], which
is a semiclassical approximation in which eqn (4) of Ref. [67] approximates s.
The lower, dashed sketch in Fig. 1 shows refinement of the semiclassical result
proposed in which the upper continuous curve is the asymptote for sufficiently
large s. The major difference between the two curves in Fig. 1 lies in the behav-
iour of s/ ν at d = 2. In the semiclassical case, s/ ν is zero at s = 1(d = 2)

because ν becomes infinite there (see eqn (7) of Ref. [67]). In the behaviour
illustrated as the dashed curve sketched in Fig. 1, s/ ν = d − 2 from eqn (1)
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of Ref. [67] is satisfied by s becoming zero at d = 2, and ν remaining finite
(5/2).

4 Metal-insulator transitions, including Wigner electron crystallization,
with and without magnetic fields

As the third and final topic of this review, we shall focus on metal-insulator transitions
driven by electron correlation. This takes us back at least to the ideas of Wigner [68] in
1934, who was concerned at that time with the quantum-mechanical jellium model of
a metal. To take the alkali metals Na and K, it was already thought that, at atmospheric
pressure and low temperatures, these could be usefully modeled by smearing out the
Na+ ions, say, into a uniform neutralizing unresponsive background in which the (3s)
conduction electrons moved under the influence of their mutual Coulombic repulsion.

4.1 Thermodynamics of Wigner electron crystallization

Following Parrinello and March [69], let us begin by examining the case of constant
pressure p and temperature T.

Denoting the Gibbs free energy by G, the equilibrium condition for the electron
liquid to crystal transition is

G1 = G2 (4.1)

For changes �E, �S and �V in internal energy, entropy and volume, respectively
across the transition, Eq. (4.1) yields

�E = T �S − p�V . (4.2)

For the Coulomb system under discussion, the virial theorem takes the form

2K + U = 3pV, (4.3)

K denoting kinetic and U potential energy. Thus

p�V = 2

3
�K + 1

3
�U (4.4)

and hence it follows from Eqs. (4.4) and (4.2) that

T �S = 5

3
�K + 4

3
�U. (4.5)

(a) Melting curve in classical limit

The classical limit of Eq. (4.5) is readily found to be

�S = 4

3

�U

T
, (4.6)
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while Eq. (4.4) yields

�V = 1

3

�U

p
. (4.7)

Employing the Clausius–Clapeyron equation for a first-order phase transition, namely,

dp

dT
= �S

�V
, (4.8)

leads to the melting curve in this classical regime as

p = AT 4. (4.9)

(b) Zero temperature predictions

Returning to Eq. (4.5) and inserting T = 0 we find

�E = �K + �U = 1

5
�U (4.10)

and

�U = − 1

5p
�V (4.11)

Turning next to the case of V and T constant, we have the equilibrium condition
as H1 = H2, with H the Helmholtz free energy. From the virial result (4.3) we have
further that

V �p = 2

3
�E − 1

3
�U (4.12)

and from the equilibrium condition it follows that

�E = T �S (4.13)

These Eqs. (4.12) and (4.13) then yield the following limiting results:

(a) Classical

�p = 1

3V
�U (4.14)

and

�S = �U

T
(4.15)

The melting curve following from Eqs. (4.14) and (4.15), was already known, for
example in Pollock and Hansen’ s work [70] as
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V = AT −3 (4.16)

or

T = χρ
1
3 (4.17)

where ρ denotes the number density, proportional to V−1, while

χ = (Ze)2
(

4

3
π

)1/3
/

158kB, (4.18)

Ze being the charge on the point ions.

(b) Case of zero temperature
The T = 0 limit becomes, in case of constant V

�E = 0 (4.19)

and

�p = − 1

3V
�U (4.20)

d-dimensional results
Following again Parrinello and March [69], the above thermodynamics can be

extended to the case of a Coulomb assembly in d dimensions. Then, following for
instance Toulouse’s work [71], which does not however consider non-zero pressure,
the virial theorem becomes

2T + (d − 2)U = dpV . (4.21)

The most interesting case after d = 3 is when d = 4. Then Eq. (4.21) reduces to

E = 2pV . (4.22)

Hence the melting curve in the density-temperature (ρ, T) plane follows as

T = Cρ1/2 (4.23)

As Parrinello and March stress [69], Eq. (4.23) is, in fact, fully quantal. From Eq. (4.23),
the average interelectronic spacing rs for crystallization, r∗

s say, is infinite. This follows
also from scaling considerations. For a change of scale r → r ′ = r/s, the jellium
(homogeneous electron gas) Hamiltonian H becomes H ′:

H = − h̄2

2m

∑

i

∇2
i + e2

2

∑

i �= j

1
∣
∣ri − r j

∣
∣d−2 → H ′ (4.24)
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Fig. 2 Critical rs for Wigner crystallization as a function of dimensionality d (schematic) [69]

The transformed Hamiltonian in Eq. (4.24) reads then

H ′ = s2

⎛

⎝− h̄2

2m

∑

i

∇2
i + e2

2
s−∈ ∑

i �= j

1
∣
∣ri − r j

∣
∣d−2

⎞

⎠ (4.25)

where ∈ = 4 − d. Thus, for the high density limit s → ∞, we approach the free
particle case for ∈ > 0 and the Wigner case for ∈< 0.

We therefore have the qualitative plot for r∗
s as a function of d shown in Fig. 2. The

point d = 1 corresponds to r∗
s = 0. This is due to the absence of phase transitions in

one dimension and for strong repulsive (Coulomb) interactions in this case an ordered
state must result (compare [72]).

4.2 Equilibrium between a quantum liquid and a two-dimensional Wigner electron
solid in a perpendicular magnetic field

The localization of electrons in impure semiconductors was treated by Durkan et al.
[73] with emphasis on transport properties of highly compensated InSb in an applied
magnetic field. In this study, the proposal was made that Wigner electron crystal-
lization could be aided by means of localization brought about by strong applied
magnetic fields. This proposal of a magnetically induced Wigner solid (MIWS) has
subsequently been confirmed by experiments of Andrei et al. [74] in a two-dimensional
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GaAs/AlGaAs heterojunction. Their main findings have been verified and extended
by the photoluminescence experiments of Buhmann et al. [75].

Motivated by these studies, and especially by the desire to understand the melting
curve of the MIWS, Lea et al. [76] have given the thermodynamics of such melting
in a magnetic field. Following, for example, Pippard’s account [77], for the two-
dimensional Wigner electron crystal under discussion the melting temperature Tm of
the first-order transition to an electron liquid must obey the thermodynamic relation

(
∂Tm

∂ H

)

	

= −�m

�S
, (4.26)

where 	 now defines the volume. If we denote the crystal phase by the subscript
C and the liquid phase by the subscript L, then �m = mL − mC is the change of
magnetization in melting, while �S = SL − SC is the corresponding change in the
entropy. It is conventional to characterize H by the Landau level filling factor ν, given
in terms of the areal electron density n and the magnetic field applied perpendicular
to the electron layer by

ν = nhc/eH . (4.27)

At this point, we summarize the schematic phase diagram, proposed by Buhmann et
al. [75], and following Lea et al. [76] in Fig. 3. Four crystal phases, denoted C1 − C4,
are shown interspersed with the liquid phase at the filling factors corresponding to
the fractional quantum Hall effect at ν = νq = 1/q with q = 5, 7 and 9. The
final solid phase drawn by Buhmann et al. [75] ends at a critical filling factor of
νc = 0.28 ± 0.02. These experimental results prompted Lea, March and Sung [76]
to generalize the thermodynamics of Wigner crystallization, already considered by
Parrinello and March [69] as reviewed earlier. This led to the form, from Eqs. (4.26)
and (4.27) above, that

(
∂Tm

∂ ν

)

	

=
(

H

ν

)
�m

�S
(4.28)

The properties following from Eq. (4.28) are then summarized in the caption to Fig. 3.
The essence of Fig. 3 is then explained in terms of the change in magnetization �m

across the melting curve by Lea, March and Sung [76] and the action shown in the
schematic Fig. 3 being centred on the diamagnetism of the so-called Laughlin liquid
phase in equilibrium with the Wigner electron crystal. Lea et al. [76] explained the
schematic form in terms of an anyon model, appropriate, of course, in two dimensions.
These authors noted that this field dependence of �m was reminiscent of the de Haas-
von Alphen effect at integral ν values.

This prompts us to cite the subsequent work of Wu et al. [78]. These authors gave
a detailed theoretical treatment of the thermal activation of quasiparticles and the
thermodynamic observables in the Laughlin liquid focused on by Lea et al. [76]. The
important conclusion of Wu et al. [78] is that what are usually thought of as different,
but equivalent pictures (anyon, composite Fermion and composite Boson) of the effect
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Fig. 3 Schematic phase diagram showing the four crystal phases, C1–C4, and the reentrant liquid phase at
ν = 1/9, 1/7 and 1/5. The symbols mark the points �E, �U and �K = 0 as deduced from thermodynamics
[76]. The arrows show the direction of �E, �U and �K across the phase boundary nearest to the arrows.
The arrows in phases C2 and C4 match those shown in phase C3

under discussion can exhibit significant differences at finite temperature, though they
all prove to be equivalent at T = 0. Then the final sentence of Wu et al. [78] reads, and
we quote ‘In particular, it is more desirable that these theoretical predictions would be
put to experimental tests, if the tremendous difficulties in measuring thermodynamic
quantities of a thin layer of electron gas could be overcome someday’.

It is therefore the more remarkable that the existing experiments of Andrei et al. [74]
and Buhmann et al. [75], as interpreted by Lea et al. [76], allow detailed thermodynamic
properties to be discussed from the equilibrium between a Laughlin liquid and a Wigner
electron solid (see also [79,80]).

4.3 Phenomenological theory of first- and second- order metal-insulator (MI)
transitions in three dimensions at T = 0

Below the phenomenological theory proposed by March, Suzuki and Parrinello [81]
(below MSP) will be outlined. The point to be stressed first is that the order parameter
in their phenomenology is the discontinuity, say q, in the single-particle occupation
probability at the Fermi surface.

First, let us consider the case of the second-order MI transition in a half-filled
Hubbard band. q, as shown in Ref. [81], turns out then to have a critical exponent of
unity. MSP also expose the relation to Gutzwiller’s variational treatment. Additionally,
the enhancement of the spin susceptibility by the Hubbard interaction will also be
discussed below.

To avoid repetition, let us therefore include in the energy expansion in low orders
of q also the magnetization m and the applied field h. Then the energy expansion
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proposed by MSP reads:

E(m, q) = E0 + am2 − hm + E1q + E2q2 + · · · + eqm2 (4.29)

Minimizing with respect to m, one readily finds that

2am + 2eqm = h (4.30)

and hence the spin susceptibility χ is

χ = m/h = 1

2 [a(U ) + eq]
(4.31)

Here, we have used a notation which makes explicit the fact that the quantity a will
depend of the magnitude of the Hubbard U. This, in turn, is the energy cost of placing
two electrons with opposite spin on the same lattice site.

If the transition is second order at a critical value of U, denoted below as Uc, then
q → 0 as U → Uc. Then the physically important question as to the enhancement of
the magnetic susceptibility χ as the MI transitions is approached rests on the behavior
of a(U) as a function of the Hubbard interaction. Provided a → 0 as U → Uc as
(1 − U/Uc) or faster, then MSP demonstrate that

χ ∝ Uc

Uc − U
(4.32)

It is of practical interest to note here the related discussion by Brinkman and Rice [82]
in relation to experiments on the solid V2O3, which indeed show enhancement of χ

by U in the metallic phase in the proximity of the MI transition.
The same phenomenology used above for a second-order MI transition can also be

applied to the melting of a Wigner electron crystal, the melting phase transition being
first order. The gist of the results already discussed in some detail above again follows
from the MSP phenomenology.

Subsequently, we note that Chapman and March [83] have generalized the MSP
phenomenology to non-zero temperature to gain some insight into the behavior of
the spin susceptibility χ as a function of T along the liquid-vapor coexistence curve
towards the critical point for liquid metals (e.g. Cs). As a byproduct of this analysis,
Chapman and March [83] were able to estimate for liquid Cs the way the jellium
prediction of the discontinuity q in the momentum distribution at the Fermi surface
depended on the electron-ion interaction: of course not dealt with in the jellium model.
Their conclusion, which has some support from NMR experiments, is that q can be
increased by a factor of 2 or more by the presence of electron-ion interaction, in liquid
metallic Cs.
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5 Brief concluding remarks and possible future direction

Emphasis has been given in this review to the statistical thermodynamics of a number
of Hamiltonians.

The first of these is that of the 3D Ising model. Because the detail rapidly prolif-
erates, we have thought it important in this review to consider recent progress in the
mathematical structure. Thus topological, algebraic and geometric aspects are focused
on as concisely as possible in Sect. 2.1. By analyzing the mathematical structure, we
have illustrated the following facts for the 3D Ising model [21]: the complexified
quaternion basis constructed for the 3D Ising model represents naturally the rotation
in a (3 + 1)-dimensional space-time, which is consistent with the fourfold integrand
of the partition function by taking the time average. A unitary transformation with a
matrix being a spin representation in 2n·l·o-space corresponds to a rotation in 2n·l·o-
space, which serves to smooth all the crossings in the transfer matrices, contributes
as the non-trivial topologic part of the partition function and changes the wave func-
tions by complex phases φx , φy , and φz of the 3D Ising model. A tetrahedron relation
would ensure the commutativity of the transfer matrices and the integrability of the
3D Ising model, and its existence is guaranteed also by the Jordan algebra and the
Jordan-von Neumann–Wigner procedures. The analysis of this Ising model is already
argued by studying conformal invariance in three dimensions [19]. The 3D conformal
transformations can be decomposed into three 2D such transformations, where it is
important that Virasoro algebra is still appropriate. The arguments presented bear on,
and support, the two conjectures made by ZDZ in [9], which lead to the complete set
of critical exponents for the 3D Ising model. The rich features revealed in [21] for
the mathematical structure of the 3D Ising model just show a corner of mathematical
iceberg below the sea level of the physical phenomena [1–37,54,60,84–96].

Much more briefly we have next considered Anderson localization as driven by
disorder. The important semiclassical discussion by García-García [65] is first empha-
sized and then in Fig. 1 the changes we have proposed to the critical exponents [66,67]
are displayed. Further work to confirm, or if necessary to improve Fig. 1 is still called
for.

Then in Sect. 4 a treatment of metal-insulator transition is given, based as starting
point on the so-called jellium Hamiltonian (see Eq. (4.24) in D dimensions). This is
followed by a largely thermodynamic discussion of the equilibrium between a quan-
tum (Laughlin) liquid and a two-dimensional Wigner electron solid in a perpendicular
magnetic field. Close contact is thereby made with experiments carried out in [74] and
[75] using a two-dimensional GaAs/AlGaAs heterojunction. Finally, a phenomenolog-
ical theory of both first- and second-order metal-insulator transitions is summarized,
but now by invoking the Hubbard Hamiltonian [see Eqs. (4.31) and (4.32) for the mag-
netic susceptibility χ as a function of the Hubbard interaction] in three dimensions
at T = 0. In each of the areas considered in this overview, we stress the continuing
importance of the closest possible interaction between theory and experiment.
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